埃迪卡拉生物群(在以前氧气浓度高的时候,单细胞生物也会很大吗
发布时间: 2023-07-07

本文目录

在以前氧气浓度高的时候,单细胞生物也会很大吗

提出这个问题的读者,是受了网上一种错误论断的误导。有人说氧气浓度越高,生物体的体型越大,实际上这一说法只有在特定情况下才是真命题。

单细胞生物体型和氧气浓度关系不大

我们首先要搞清楚氧气浓度为什么能影响生物体型。现在绝大多数生物都是需养生物,生物需要将氧气输送至每一个细胞。随着生物体型增长,其体积的扩大速度要比表面积的扩大速度快。长度增加到原来两倍,表面积就增大到四倍,体积则增大到八倍。

低等动物都是从身体表面直接吸收氧气的。随着体型增大,其需要氧气的细胞多了,而吸收氧气的面积却相对少了,因此,只有更高浓度的氧气才能够供养起更大的体型。

单细胞动物:草履虫

后生动物是一个与单细胞的原生动物相对的概念,也就是多细胞动物。它们往体型更大的方向发展,主要是为了发育出更复杂的器官和系统,以增强自身生存能力。

单细胞生物就只有一个细胞,真核细胞直径10-30微米,容纳细胞核和各种细胞器已经足够了,而没有细胞核的原核细胞(如细菌)体积就更小了,只有0.5-5微米。单细胞生物没有大型化的进化动力,因此氧气浓度升高对它们体型影响有限。

在地质史上氧气浓度最高的石炭纪(约3亿年前),千足虫有三米长,蜻蜓像海鸥那么大,蝎子有70厘米,但从来没有发现巨型细胞的遗迹。

石炭纪的巨型蜻蜓

另外需要大家注意的是,高等动物已经进化出了肺这种高效的呼吸器官和发达的血液循环系统,不需要通过扩大皮肤表面积来增加氧气摄入量了。

因此高等动物的体型和氧气浓度关系不大。例如,恐龙时代的氧气浓度就和今天差不多。而今天的氧气浓度,对有史以来最大的动物之一——蓝鲸,也已经足够用了。

恐龙时代

氧气浓度升高会给单细胞生物带来什么?

地球大气中氧气经历了从无到有,从少到多的过程。既然单细胞生物不会随着氧气浓度的增长而长出更大的细胞,那么越来越多的氧气将如何影响原始单细胞生物的进化呢?

地质史上,氧气的出现和不断积累,给原始单细胞生物带来的首先是灾难,然后是进化机遇,最后是辉煌。

1、灾难

大气中本没有氧气,因此最早的生命也都是厌氧生物,以古菌和细菌为主。氧气对专性厌氧生物来说是有毒的。蓝藻是第一种能产生氧气的生物。距今24亿年前,氧气开始在海洋和大气中积累,给当时占统治地位的厌氧生物带来了一场浩劫,史称“氧气灾难”。

古菌

氧气能破坏厌氧的古菌和细胞的DNA,使它们无法复制,导致它们大量死亡。今天,我们只能在海底火山喷口这类极端缺氧环境见到古菌了。

2、进化机遇

其中一支古菌具有DNA修复功能,因此活了下来。这支古菌进化出了保护性的细胞核,这就是最早的真核生物。今天的真菌、植物、动物和人类都是真核生物,都是这一伙的后代。

这些原始的真核生物发现,单纯的修复不足以弥补DNA损伤,有时候一个关键位点的突变就是致命的,因此它们发展出了基因重组功能,生物界第一次有了男与女、雄与雌的区分。

真核生物的呼吸中心:线粒体

氧气的出现也为所有生物提供了唾手可得的自由能,使幸存的原始单细胞生物加速向高等、复杂的生命形式进化。

3、埃迪卡拉的失败

在距今5.85亿年前的埃迪卡拉纪,地球已经结束了成冰纪的严寒,氧气浓度也上升到了10%左右,环境似乎比较适宜,原生生物开始了往复杂方向进化的第一次尝试,一时间地球上出现了很多奇形怪状的宏体生物(即人的肉眼能看到的生物),这就是埃迪卡拉生物群。

埃迪卡拉生物群

这些埃迪卡拉生物长得实在太任性了,它们有的像光盘,有的像水管,有的像绒布袋子。它们有的是类似现存生物的两侧轴对称,有的是三辐射对称,还有的是滑移对称,区区一百来种生物几乎囊括了所有的对称方式。它们的共同特点是通体柔软,没有矿化的骨骼结构,而且都是固定于海床的。

它们选择了扁平化的身体,以尽可能增加吸收氧气的面积,确保在氧气浓度不算高的环境中,每个细胞都能获取充足的氧气。

滑移对称的埃迪卡拉生物化石

埃迪卡拉生物的所有组织结构特征,都难以在现存生物中找到相应的例子,甚至在紧接着的寒武纪时期都找不到相似的生物。因此埃迪卡拉生物很可能全部灭绝了,没有留下任何后代。在进化史上,埃迪卡拉生物既是伟大的创新,又是失败的试验。

4、寒武纪的辉煌

到5.41年前寒武纪来临之时,大气中氧气浓度达到了空前的15%,各方面环境更适宜了,原生动物开始了第二次进化尝试,这就是寒武纪生物大爆发。

寒武纪大爆发

有了埃迪卡拉生物扁平化之路失败的教训,这次原始生命选择了新的进化道路:即形成体腔,进化出复杂的内部器官和系统。寒武纪生物的最大特点在于硬质组织增长,即拥有矿化的骨骼。

在寒武纪之初的1300-2500万年前,现生后生动物主要门类腕足动物、环节动物、软体动物、节肢动物纷纷出现,动物、植物、细菌的多样性都走向繁盛。

寒武纪大爆发是地球生命进化中具有决定性意义的转折点,这次爆发出现的生物繁衍至今,为后来及今天生物多样性的辉煌奠定了基础。

寒武纪大爆发的标志性动物:三叶虫,其无论纵向(叶)还是横向(头、胸、腹)都分成三部分

总 结

缺氧会阻止大型复杂动物的崛起,因为较低的氧气浓度不足以供养复杂的内部构造。在寒武纪之前,氧气浓度与真核生物的多样性呈现出正相关,寒武纪大爆发就发生氧气浓度升至高位的年代。

因此,氧气浓度升高没有使原生生物的单细胞变大,而是促进了它们的细胞分化,使它们走向了复杂、高等的进化之路。

地球上第一次出现生物,是什么时期

古生物学家告诉我们,大约在 36 亿年前,第一个有生命的细胞产生.

生命的起源和细胞的起源的研究不仅有生物学的意义,而且有科学的宇宙观的意义.细胞的起源包含三个方面;①构成所有真核生物的真核细胞的起源;②与生命的起源相伴随的原核细胞的起源;③最新发展的三界学说,即古核细胞的起源.

生命的起源应当追溯到与生命有关的元素及化学分子的起源.因而,生命的起源过程应当从宇宙形成之初、通过所谓的“大爆炸”产生了碳、氢、氧、氮、磷、硫等构成生命的主要元素谈起.

大约在66亿年前,银河系内发生过一次大爆炸,其碎片和散漫物质经过长时间的凝集,大约在46亿年前形成了太阳系.作为太阳系一员的地球也在46 亿年前形成了.接着,冰冷的星云物质释放出大量的引力势能,再转化为动能、热能,致使温度升高,加上地球内部元素的放射性热能也发生增温作用,故初期的地球呈熔融状态.高温的地球在旋转过程中其中的物质发生分异,重的元素下沉到中心凝聚为地核,较轻的物质构成地幔和地壳,逐渐出现了圈层结构.这个过程经过了漫长的时间,大约在38亿年前出现原始地壳,这个时间与多数月球表面的岩石年龄一致.

生命的起源与演化是和宇宙的起源与演化密切相关的.生命的构成元素如碳、氢、氧、氮、磷、硫等是来自“大爆炸”后元素的演化.资料表明前生物阶段的化学演化并不局限于地球,在宇宙空间中广泛地存在着化学演化的产物.在星际演化中,某些生物单分子,如氨基酸、嘌呤、嘧啶等可能形成于星际尘埃或凝聚的星云中,接着在行星表面的一定条件下产生了象多肽、多聚核苷酸等生物高分子.通过若干前生物演化的过渡形式最终在地球上形成了最原始的生物系统,即具有原始细胞结构的生命.至此,生物学的演化开始,直到今天地球上产生了无数复杂的生命形式.

38亿年前,地球上形成了稳定的陆块,各种证据表明液态的水圈是热的,甚至是沸腾的.现生的一些极端嗜热的古细菌和甲烷菌可能最接近于地球上最古老的生命形式,其代谢方式可能

微信