一元二次方程求根公式的历史进程(一元二次方程的历史发展
发布时间: 2023-07-10

本文目录

一元二次方程的历史发展

公元前2000年左右,古巴比伦的数学家就能解一元二次方程了。他们是这样描述的:已知一个数与它的倒数之和等于一个已给数,求出这个数。他们使x1+x2=b,x1x2=1,x2-bx+1=0,再做出解答。可见,古巴比伦人已知道一元二次方程的解法,但他们当时并不接受负数,所以负根是略而不提的。
古埃及的纸草文书中也涉及到最简单的二次方程,例如:ax2=b。
大约公元前480年,中国人已经使用配方法求得了二次方程的正根,但是并没有提出通用的求解方法。《九章算术》勾股章中的第二十题,是通过求相当于x²+34x-71000=0的正根而解决的。中国数学家还在方程的研究中应用了内插法。
公元前300年左右,古希腊的欧几里得(Euclid)(约前330年~前275年)提出了用一种更抽象的几何方法求解二次方程。
古希腊的丢番图(Diophantus)(246~330)在解一元二次方程的过程中,却只取二次方程的一个正根,即使遇到两个都是正根的情况,他亦只取其中之一。
公元628年,印度的婆罗摩笈多(Brahmagupta)(约598~约660)出版了《婆罗摩修正体系》,得到了一元二次方程x²+px+q=0的一个求根公式。
公元820年,阿拉伯的阿尔·花剌子模(al-Khwārizmi) (780~810)出版了《代数学》。书中讨论到方程的解法,除了给出二次方程的几种特殊解法外,还第一次给出了一元二次方程的一般解法,承认方程有两个根,并有无理根存在,但却未有虚根的认识。他把方程的未知数叫做“根”,后被译成拉丁文radix。其中涉及到六种不同的形式,令a、b、c为正数,如ax2=bx、ax2=cx、ax2+c=bx、ax2+bx=c、ax2=bx+c等。把二次方程分成不同形式作讨论,是依照丢番图的做法。
法国的韦达(1540~1603)除推出一元方程在复数范围内恒有解外,还给出了根与系数的关系。

求一元二次方程求根公式解法!

一元二次方程的解法有如下几种: 第一种:运用因式分解的方法,而因式分解的方法有:(1)十字相乘法(又包括二次项系数为1的和二次项系数不为1,但又不是0的),(2)公式法:(包括完全平方公式,平方差公式,).(3)提取公因式 例1:X^2-4X+3=0 本题运用因式分解法中的十字相乘法,原方程分解为(X-3)(X-1)=0 ,可得出X=3或1。 例2:X^2-8X+16=0 本题运用因式分解法中的完全平方公式,原方程分解为(X-4)^2=0 可以得出X1=4 X2=4(注意:碰到此类问题,一定要写X1=X2=某个数,不能只写X=某个数,因为一元二次方程一定有两个根,两个根可以相同,也可以不同) 例3:X^2-9=0 本题运用因式分解法中的平方差公式,原方程分解为(X-3)(X+3)=0 ,可以得出X1=3,X2=-3。 例4:X^2-5X=0 本题运用因式分解法中的提取公因式法来解,原方程分解为X(X-5)=0 ,可以得出X1=0 ,X2=5 第二种方法是配方法,比较复杂,下面举一个例来说明怎样用配方法来解一元二次方程: X^2+2X-3=0 第一步:先在X^2+2X后加一项常数项,使之能成为一项完全平方式,那么根据题目,我们可以得知应该加一个1这样就变成了(X+1)^2。 第二步:原式是X^2+2X-3,而(X+1)^2=X^2+2X+1,两个葵花子对比之后发现要在常数项后面减去4,才会等于原式,所以最后用配方法后得到的式子为(X+1)^2-4=0,最后可解方程。 还有一种方法就是开平方法,例如:X^2=121,那么X1=11,X2=-11。 最后如果用了上面所有的方法都无法解方程,那就只能像楼上所说的用求根公式了。 定理就是韦达定理,还有根的判别式,韦达定理就是一元二方程ax^2+bx+c=0(a不等于0)二根之和就是-b/a,两根之积就是c/a 举例:X^2-4X+3=0 两根之和就是-(-4/1)=4,两根之积就是3/1=3,(你可以自己解一下,看看是否正确)。 因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让 两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个 根。这种解一元二次方程的方法叫做因式分解法。 例4.用因式分解法解下列方程: (1) (x+3)(x-6)=-8 (2) 2x2+3x=0 (3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学) (1)解:(x+3)(x-6)=-8 化简整理得 x2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分解因式) ∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x1=5,x2=-2是原方程的解。 (2)解:2x2+3x=0 x(2x+3)=0 (用提公因式法将方程左边分解因式) ∴x=0或2x+3=0 (转化成两个一元一次方程) ∴x1=0,x2=-是原方程的解。 注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。 (3)解:6x2+5x-50=0 (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错) ∴2x-5=0或3x+10=0 ∴x1=, x2=- 是原方程的解。 (4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 �6�12 ,∴此题可用因式分解法) (x-2)(x-2 )=0 ∴x1=2 ,x2=2是原方程的解。 小结: 一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般 形式,同时应使二次项系数化为正数。 直接开平方法是最基本的方法。 公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式 法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程 是否有解。 配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法 解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。

一元二次方程是谁发明的

“一元二次方程新解法”的发明人叫罗伯森,是卡内基梅隆大学华裔数学教授、美国奥数教练,并且罗伯森教授表示:“如果这种方法直到今天都没有被人类发现的话,我会感到非常惊讶,因为这个课题已经有4000年的历史了,而且有数十亿人都遇到过这个公式和它的证明。”

事实上,在古代,全世界的数学家对一元二次方程都有研究,虽然也没有一模一样的方法出现,但是究其内涵,有些古代的解法与罗教授的解法可谓是大同小异。原因也不难想,古代的数学家们没有韦达,更没有代数的符号记法,而现如今罗教授的解法确实有“踩肩膀”的嫌疑。

扩展资料:

古阿拉伯对一元二次方程的解法

阿尔·花剌子模在书中提出一个问题:“一个平方和十个这个平方的根等于三十九个迪拉姆,它是多少?”由于当时代数符号根本没有发明,古代数学的方程只能靠文字去描述。

设这个数是X,那么“平方”就是X²,“平方的根”就是将X²在开方,故“平方的根”是指“X”,“十个这个平方的根”就是10X,问题转化为求方程:X²+10X=39的解。

花剌子模给出的解法是:(注意:下文中的“根”,不指现如今方程的根,而指平方根)

1、将根的个数减半。本题中,是将10减半,故得到5;

2、用5乘自己,再加39,得到64;<

微信