学术圈为何有人只看中论文,以论文做作为评价人才的唯一指标,而不重视真正能够创造价值的科学研究?现代教材怎么表述公理
发布时间: 2023-07-17

本文目录

学术圈为何有人只看中论文,以论文做作为评价人才的唯一指标,而不重视真正能够创造价值的科学研究

啥问题,能创造价值的成果出来,然后写成论文告诉大众,这就叫论文。不然你以为论文是啥?骂半天其实就是没搞明白论文写的是啥,以为就是文字和嘴皮子。论文就是研究成果的表达,不需要你写得像散文一样,但是要有你的研究结果。真受不了一堆不搞科研的又想在高校混,然后天天骂论文,恨不得上1天课放6天假,平时再学一下那个禽兽谢教授,挂个独董然后整天动歪脑筋。

现代教材怎么表述公理的

欧几里得的《几何原本》大约成书于公元前三世纪左右,它是用公理建立起演绎体系的最早典范。两千多年来,它一直是人们学习演绎推理的权威教材。为了使平面几何内容使教师易教和学生易学,遵循学生的认知规律,初中数学教材对《几何原本》中的公理体系进行了教学处理,给出了一个弱化的公理体系,让学生感受公理化思想。《几何原本》中的公理体系与初中数学教材中的公理体系是不完全相同的。

《几何原本》中的公理体系

《几何原本》分为13卷,共465个命题,涉及平面几何、立体几何及数论等领域。第1卷给出了23条定义、5条公设和5条公理,这些定义、公设和公理就是《几何原本》中的公理体系证明的出发点。

5条公设:

(1)由任意一点到另外任意一点可以画直线。

(2)一条有限直线可以继续延长。

(3)以任意点为心及任意的距离可以画圆。

(4)凡直角都彼此相等。

(5)同平面内一条直线和另外两条直线相交,若在某一侧的两个内角的和小于二直角的和,则这二直线经无限延长后在这一侧相交。(与平行公理等价)

显然第5公设与其他公设不同,它的行文较长,远不是那种不证自明的真理。有证据表明,欧几里得本人在《几何原本》第1卷的演绎证明中一直尽力避免应用这一平行公设,在前28个命题的证明过程中,他对其他公设都运用自如,而唯独一直没有使用第5公设。

5条公理:

(1)等于同量的量彼此相等。

(2)等量加等量,其和仍相等。

(3)等量减等量,其差仍相等。

(4)彼此能重合的物体是全等的。

(5)整体大于部分。

公设是针对几何的,公理更具一般性,不仅仅针对几何。长期以来,人们认为公理4具有几何特征,应归入公设的范围。

初中数学教材中的公理体系

《义务教育数学课程标准(2011年版)》列出了9条基本事实作为初中数学教材中的公理体系证明的出发点(如下表)。之所以称“基本事实”,而不称公理,其原因在于9条基本事实中大部分都是《几何原本》中的公理体系的定理;而且这9条基本事实也不具有公理体系所应具有的独立性、相容性和完备性。《几何原本》中的公理体系与初中数学教材中的公理体系证明的出发点如下表所示。

如S.S.S,初中数学教材把它作为基本事实,而《几何原本》把它作为定理。为了证明该定理,欧几里得采用了下列方法。

要证明三边对应相等的△ABC和△A′B′C′全等,只需证明两个三角形能完全重合,即只需把某一对应边,例如BC和B′C′重叠,证明A与A′重合即可。如图1所示,A与A′的情况只有下列4种情况:

(1)A和A′不包含在另一三角形中。

(2)A和A′之一在另一三角形内部。

(3)A和A′之一在另一三角形边上。

(4)A和A′重合。

图1

对于情况1,如图2,连结A 和A′。因为△ABA′是等腰三角形,所以底角相等,即∠BAA′=∠BA′A。

由图2可知∠CAA′<∠BAA′=∠BA′A<∠CA′A,即∠CAA′<∠CA′A。由于CA=CA′,

所以∠CAA′=∠CA′A。于是矛盾,因此情况1不成立。

图2

对于情况2,如图3,分别延长BA、BA′至D、E。因为BA=BA′,所以∠BAA′=∠BA′A,所以∠DAA′=∠EA′A。

由图3可知∠CAA′<∠DAA′=∠EA′A<∠CA′A,即∠CAA′<∠CA′A。

由于CA=CA′,所以∠CAA′=∠CA′A。于是矛盾,因此情况2不成立。

图3

对于情况3,显然不成立。综上,只有情况4成立,即A和A′重合。

在欧几里得之后约500年(3世纪),一个叫费洛的几何学家通过把两个三角形如图4放置,连结AA′,利用“等边对等角”得出∠BAC=∠BA′C,再利用S.A.S(S.A.S是第1卷的第4个命题,S.S.S是第1卷的第8个命题)证明△ABC≌△A′B′C′。

图4

《几何原本》与初中数学教材中的公理体系证明举例

初中数学教材作为基本事实的三角形全等的三条判定定理S.A.S、A.S.A、S.S.S,在《几何原本》中都是定理,其中,S.A.S是第1卷的第4个命题,S.S.S是第1卷的第8个命题,A.S.A是第1卷的第26个命题。

在上述欧几里得证明S.S.S的方法中,他用到“等边对等角”这一等腰三角形的性质。在《几何原本》中,“等边对等角”是第1卷的第5个命题,排在作为第1卷第8个命题的S.S.S的前面,因此,欧几里得用“等边对等角”证明S.S.S是无可厚非的。这与初中数学教材的安排刚好相反,初中数学教材是在给出三角形全等的三条判定定理S.A.S、A.S.A、S.S.S后,用三角形全等的判定证明“等边对等角”的(参见华东师大版初中数学教材八年级上册第79页)。

由于在《几何原本》中S.A.S是第1卷的第4个命题,而“等边对等角”是第1卷的第5个命题,因此欧几里得运用S.A.S对“等边对等角”给出的证明如下:

已知:如图5,在△ABC中,AB=AC。

求证:∠B=∠C。

图5

证明思路:如图6,在BD任取一点F,在AE上截取AG=AF,连结FC、GB。先运用A.S.A证明△AFC≌△AGB,得出∠ABG=∠ACF;再运用A.S.A证明△BCG≌△CBF,得出∠CBG=∠BCF。最后根据“等量减等量其差相等”得出∠ABC=∠ACB。

图6

在欧几里得之后约500年(3世纪),一个叫巴伯斯的人仅仅利用图5,通过运用S.A.S证明△ABC≌△ACB,非常简洁地得出了∠B=∠C。

由于欧几里得的证明复杂、难懂,这一定理以“笨人过不去的桥”著称。之所以有此说法,一是因为欧几里得的图形有点像座桥;二是因为许多对几何知识了解不深的学生都难于理解这一定理的证明,也就是无法跨过这座桥,进入《几何原本》的其他部分的学习。

通过《几何原本》和初中数学教材对这一定理的不同证明,我们感受到:如果初中数学教材严格按照《几何原本》的公理体系呈现,对初中学生的学习显然会带来很大困难。因此,《义务教育数学课程标准(2011年版)》对平面几何内容的处理是适当的,既遵循了数学的发展规律,又遵循了教育和初中生认知发展的规律。

教材中的公理体系编写方式弊端显现

在教材编写的风格上,问题更是严重,回顾历史,18-19世纪是数学蓬勃发展的阶段,那时的分析和代数教材演绎、归纳并重,教材编写

微信